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Introduction

Large Language Models (LLMs) demonstrate remarkable emergent abilities across various tasks, yet fall

short of complex reasoning and planning tasks. The tree-search-based reasoning methods address this

by encouraging the exploration of intermediate steps, surpassing the capabilities of chain-of-thought

prompting. However, significant inference latency is introduced due to the systematic explo-

ration and evaluation of multiple thought paths.
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Figure 1. (a) Serial, where executions are operated one after another, simplifying resource

management but increasing overall execution time; (b) Seiral SD, where speculative decoding is used

for each execution; (c) Scheduled SD, which involves several parallel draft models and one target

model; (d) Parallel, where multiple executions run concurrently, reducing completion time but

increasing GPU HBM. Latency

(a) Serial (b) Parallel (c) Schedule

Target DraftGPU HBM represents a unit length of execution time.

Therefore, we propose SEED, a novel and efficient inference framework that utilizes SchEduled
spEculative Decoding to manage the scheduling of parallel draft models, to address both runtime

speed and GPU memory resource management concurrently in reasoning tree construction.
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Figure 2. Two main components in reasoning tree construction, which are Thought Generator and

State Evaluator, respectively.

SEED effectively handles two scenarios: (1) executing multiple iterations with the

same prompt; (2) evaluating multiple iterations with different prompts.

Inspired by Operating System Scheduling

We utilize scheduled speculative decoding to manage the scheduling of parallel draft

models. As depicted in Figure 1 (c), given that there is only one shared target model,

which can not simultaneously verifymultiple draft models, we address this limitation

by drawing inspiration from process scheduling in operating system management.
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Figure 3. Analogy between the Operation System scheduler with our proposed SEED.

As shown in Figure 3, each component in SEED can be mapped to a corresponding

component in the operating system scheduler. We elaborate on each component

individually as below:

The rounds-scheduled execution in SEED corresponds to the process scheduling

in OS. Both use an FCFS queue to control and maintain the overall execution flow.

A key distinction exists: in SEED, after the drafting tokens are processed by the

verification phase, the draft model is returned to the queue, i.e., “rounds”. In

contrast, in OS scheduling, a process that has been handled by the CPU is marked

as completed.

The verification of draft tokens mirrors an operating process in OS scheduling.

The target model serves Mt analogously to the CPU.

The total verification time of Mt resembles the CPU time in OS process scheduling.

The framework of SEED
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Figure 4. (a) The scenario where the target model manages the verification of target models at the

beginning; (b) Overall scheduling diagram for one target model and three draft models. , ,

represent Draft Model 1, Draft Model 2, Draft Model 3, respectively. , , denotes the execution

times of drafting for each corresponding draft model. refers to Target Model. represents the

execution time of the verification phase, while specifies the resampling time in cases of rejection.

Parallel Drafting Phase: Each draft model generates its own tokens while the target model Mt verifies

the tokens of other draft models.

Sequential Verification Phase: The target model first verifies the tokens generated by the draft model

at the front of the queue.

Rounds-Scheduled Strategy: We leverage a Rounds-Scheduled Strategy integrated with the FCFS

scheduling policy to manage the verification process efficiently. When a draft model completes its

drafting phase and is ready for verification, the draft sequences along with c are placed into a queue.

Experimental Result

Extensive experiments and analysis studies are conducted to demonstrate the effectiveness of SEED.

SEED achieves 1.1−1.5× speedups, generating up to 20 additional tokens per second across three

reasoning datasets.

Temp. kconfig Methods
CW(T = 2) GSM8K(T = 4) BW(T = 7)

Tokens/s Speedup Tokens/s Speedup Tokens/s Speedup

0.2

- AR 38.42 1.000× 42.31 1.000× 34.19 1.000×

(1,1,1)

SD 39.96 1.040× 51.11 1.208× 36.28 1.061×
w. SEED 41.53 1.081× 53.14 1.256× 36.93 1.080×

MCSD 40.19 1.046× 52.42 1.239× 36.04 1.054×
w. SEED 41.46 1.079× 53.78 1.271× 36.96 1.081×

(2,2,1)

SD 46.22 1.203× 60.63 1.433× 40.04 1.171×
w. SEED 48.60 1.265× 65.24 1.542× 44.24 1.294×

MCSD 46.80 1.218× 60.88 1.439× 40.79 1.193×
w. SEED 48.79 1.270× 65.58 1.550× 44.75 1.309×

1.0

- AR 39.47 1.000× 47.81 1.000× 34.62 1.000×

(1,1,1)

SD 45.90 1.163× 55.32 1.157× 35.14 1.015×
w. SEED 46.77 1.185× 61.01 1.276× 38.94 1.125×

MCSD 45.63 1.156× 58.47 1.223× 38.05 1.099×
w. SEED 46.54 1.179× 65.50 1.370× 40.02 1.156×

(2,2,1)

SD 57.39 1.454× 66.74 1.396× 45.98 1.328×
w. SEED 58.89 1.492× 72.62 1.519× 47.22 1.364×

MCSD 56.24 1.425× 67.36 1.409× 46.18 1.334×
w. SEED 59.76 1.514× 74.44 1.557× 47.71 1.378×

Table 1. The speedup performance of our proposed SEED and baselines, with settings of SEED for

Md and Mt being LLaMA-68M and LLaMA2-7B, respectively.
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Figure 5. The variation of speedup performance across three datasets at different acceptance rates α.

More Details

More details can be found in our paper and code below:
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