
More Efficient NLP
and Agents

吴家隆(Jialong Wu)
wujialongml@gmail.com 



• Training Stage
- Less Parameter: LoRA 
- Less Data: Active Learning (SATR)

User Profiling (PROPER)
• Inference Stage

- Less Time: Speculative Decoding (SEED)
- Less Memory: KV-Cache Compression (SCOPE)

• Agent-Driven Autonomous Task Execution
- Less Human Intervention:

- WebWalker 
- WebDancer

Overall



- Finetuning Large Language Models (LLM) 
from scratch is quite resource-intensive, given 
the large number of parameters these models 
contain.

- Parameter efficient fine tuning is introduced.
- However, task-specific/user-specific fine-

tuning also demands high-quality data. 
- We propose parameter and data efficient fine 

tuning:
- Active learning for task annotation
- Progressive learning for personalized LLMFigure 1: Low-rank adaptation.

Training Stage 



Labeled
Dataset

Unlabeled
Dataset 

Data Selection

Model Training

Expensive, time-
consuming, and 
labor-intensive

𝑈ser!

…

Data 
sparsity

Active learning for task annotation

Progressive learning for personalized LLM

𝑈ser"

𝑃𝑒𝑟𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝐿𝑀!

𝑃𝑒𝑟𝑜𝑛𝑎𝑙𝑖𝑧𝑒𝑑 𝐿𝐿𝑀"

Figure 2: Active Learning.

Figure 3: Personalized LLM Training.

Training Stage 



STAR: Constraint LoRA with Dynamic Active Learning for Data-Efficient Fine-
Tuning of Large Language Models

Probe experiments reveals:
- A clear gap between the 

base model and LoRA 
model

- Model calibration issue

Figure 4: Overall of SATR.

Training Stage 



Motivation: PROPER
• Current Large Language Models primarily offer a one-size-fits-all service.

• Personalized LLMs, tailoring the outputs to user-specific preferences, became a hot research 

topic.

• Two types of LLM personalization methods: (1) prompt-based, (2) fine-tuning-based.

Fig. 1 (a) prompt-based personalized LLM, Fig. 1 (b) fine-tuning-based personalized LLM.

Retrieval
Model

Languag
e

Model
𝒙 𝒚

Input Output

User profile

Languag
e

Model
𝒙 𝒚

Input Output

User profile PEFT module

training

𝑨

𝑩



Macro-level

Fine-Tuning-based Personalized LLMs 
• Pros: (1) data privacy, (2) better user behavior pattern generalization.
• Cons: (1) data scarcity for most of users (# avg tokens for task training is 20x of # avg tokens 

for individual users). 
• Solutions: introduce meso-level LLMs (group-level LLMs) to bridge the macro-level LLMs 

(general LLMs) and micro-level LLMs (personalized LLMs). 

Population-level 
LLM

Group-level 
LLM

User-level 
LLM

Meso-level

Micro-level

Current personalization adaption
ignoring meso-level

Proposed personalization adaption 
considering meso-level

Fig 2. The comparison between 
different paradigms of LLM 

personalization.



Tuning parameters

Frozen parameters

𝑹𝒖
…

𝓛𝒖

𝑩𝒋
(𝒖)

𝑨𝒋
(𝒖)

Stage 3:
User-level adaptation

𝑾𝒖

𝑩(𝒑)

𝑨(𝒑)

𝓛𝒑

…

Stage 1:
Population-level adaptation

𝑾𝒃

user 
embeddings

…
𝑩𝟏
(𝒈)

𝑨𝟏
(𝒈)

𝑩𝟐
(𝒈)

𝑨𝟐
(𝒈)

𝑩𝒌
(𝒈)

𝑨𝒌
(𝒈) …

𝑹𝒈

𝓛𝒈 𝓛𝒄+

…

Stage 2:
Group-level adaptation

𝑾𝒑

Method
• A progressive learning framework, PROPER, consists of three stages: (1) population-level 

adaptation, (2) group-level adaptation, (3) user-level adaptation.
• Enable automatic user grouping via LoRAMoE and user-aware routers, while effectively 

integrating user and group-level knowledge through a LoRA-aware router. 

Base model 

Population-
level model 
Group-level 
model 
User-level 
model 

Fig 3. Overview of the training process of PROPER.



𝑩(𝒑)

𝑨(𝒑)

𝓛𝒑

…

Stage 1:
Population-level adaptation

𝑾𝒃

Method
Stage 1 (Population-Level Adaptation): 
• The update process of the feed-forward network (FFN) block in a Transformer can 

be expressed as:

• In the population-level adaptation stage, parameter updates are formulated as:

• The population-level LoRA is trained via fine-tuning using the cross-entropy loss:

• With the loss, Stage 1 parameters are learned and merged into the backbone 
parameters for the next training stage:



Method
Stage 2 (Group-Level Adaptation): 
• Employing LoRAMoE, represent each group with a LoRA experts:

• Assign users to groups dynamically through a user-aware router:

• Constraint loss to encourage the router to assign distinct expert weights to 
different users:

• Learn Stage 2 parameters and merge into the backbone parameters with 
similar process in Stage 1: 

user embeddings

…
𝑩𝟏
(𝒈)

𝑨𝟏
(𝒈)

𝑩𝟐
(𝒈)

𝑨𝟐
(𝒈)

𝑩𝒌
(𝒈)

𝑨𝒌
(𝒈) …

𝑹𝒈

𝓛𝒈 𝓛𝒄+

…

Stage 2:
Group-level adaptation

𝑾𝒑



Method
Stage 3 (User-Level Adaptation): 
• Assign a unique LoRA to each user:

• A new LoRA-aware router that dynamically integrates group-level 
LoRAs and user-level LoRAs:

• Learn Stage 3 parameters and merge into the backbone parameters 
with similar process in Stage 1&2: 

𝑹𝒖

…

𝓛𝒖

𝑩𝒋
(𝒖)

𝑨𝒋
(𝒖)

Stage 3:
User-level adaptation

𝑾𝒖



Experiments
Evaluation Dataset: 
• LaMP benchmark
Baselines:
• Prompt-based 

• In-Context-Learning (ICL) 
• Retrieval-Augmented Generation 

(RAG) 
• Profile-Augmented Generation (PAG)

• Fine-tuning-based
• OPPU (kv, mlp)
• PROPER (Stage 1, 2, 3)

Fig 5. LaMP input & output examples.



- The token-by-token inference of large models 
results in slower processing speeds, as each 
step of generation requires the use of the KV-
cache.

- Multi-output: ToT require independently 
traversing each branch. This leads to an 
exponential increase in inference time due to 
the autoregressive nature of the model.

- Long-output:  Long-form text leverage the 
KV-cache to accelerate attention computations, 
results in a sharp increase in memory usage.

Figure 6: Autoregressive token-by-token generation 
leveraging the key-value (KV) cache.

Inference Stage 



Multi output

Long output

Figure 7: Tree of thoughts. Figure 8: Paradigm of speculative decoding.

Figure 9: Long-context Generation.

Figure 10: KV cache compression 
(eviction) guided by attention scores.

Inference Stage 



SEED: Accelerating Reasoning Tree Construction via Scheduled

Figure 11: Illustration of four LLM execution 
strategies for generating 3 sequences in 
Reasoning Tree construction.

Figure 12: Overall scheduling diagram of SEED.

Inference Stage 



Motivation
• When Large Language Models infer on long-context tasks, the Key-Value (KV) cache occupies 

a larger amount of GPU memory and becomes a substantial bottleneck.

• Previous methods fall into two categories:

(1) The Prefill-Only compression method ➡ memory pressure for long outputs

(2) The Unified compression method ➡ fine-grained content eviction

Fig. 1 (a) The Prefill-Only Compression method, Fig. 1 (b) The Unified Compression method



Separating the Prefill and Decoding Phases
• Prefill Phase: Efficiently preserves essential information in the KV cache during the prefill.

• Decoding Phase: Enables optimized allocation of KV cache generated during decoding.

• Solutions: SCOPE, a simple yet efficient framework that Separately performs KV Cache 
Optimization during the Prefill and dEcoding phases. 

Fig. 1 (c) Separating the prefill and decoding phases



Pilot Observation: KV Cache in Inference Perspective
Prefill Stage

The 20% compression rate during the prefill phase resulted in nearly 95% degradation in 

accuracy on the GSM8k+ task within LONGGENBENCH.

Fig. 2 (a) Performances across various compression ratios during the prefill phase 
on three tasks under the full decoding cache condition.



Pilot Observation: KV Cache in Inference Perspective
Decoding Stage

Across all three layers, the retained heavy hitters predominantly originate from the KV cache 

generated during the decoding phase. 

Fig. 2 (a) Position distribution of the heavy hitters, selected by top 15% attention 
scores, at decoding steps 1, 300, and 500 across layers 0, 13, and 31.



Pilot Observation: KV Cache Budget Reallocation



Pilot Observation: KV Cache Budget Reallocation

Fig. 2 (c) Attention heatmaps for layer 13 of a GSM8k+ sample in LONGGENBENCH and 
details of the correspondence between attention scores and generated token positions.



Agent



Agents: An Open-source Framework for Autonomous Language Agents

• Long-short Term Memory: Long-term memory implemented via 
VectorDB + Semantic Search and short-term memory (working memory) 
maintained and updated by an LLM.
• Tool Usage: Use any external tools via function-calling.
• Web Navigation: Use search engines to navigate the web and get 
useful information.
• Multi-agent Communication
• Human-Agent interaction
• Symbolic Control: SOP (Standard Operation Process) that defines 
subgoals/subtasks for the overall task to customize fine-grained 
workflows for the language agents.

Figure 16: Components in agents framework.

Agent

https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/guides/gpt/function-calling
https://platform.openai.com/docs/guides/gpt/function-calling


Agent



Agent



Website: https://apple.com 
Task: Compare iPhone 15 Pro Max with iPhone 
13 Pro Max

Agent



Does gpt-3.5-turbo support structured 
outputs, like response_format: {type: 
"json_schema", ...}?

...Yes, GPT-3.5-turbo supports 
structured outputs.

What is the latest publication written 
by openai?

...OpenAI’s latest research paper is 
titled “PaperBench: Evaluating AI’s 
Ability to Replicate AI Research,” 
published on April 2, 2025.

- Can not find information hidden 
within deep webpages or the latest 
updates.



Agent

How can an agent navigate across web pages to seek deep, 
non-obvious information?
• Unlock the capability of persistent, multi-hop web 

exploration



Key challenge in RAG:
Traditional online search may not trace the 
Deeper content embedded within website.

Motivation



How to solve it:
Interacting with the web pages and digging through
them can effectively address deep information 
seeking.

We constrain actions to click to evaluate 
the agent’s navigation and information-seeking 
capabilities.

• We propose Web Traversal task.
• We construct a challenging benchmark, 

WebWalkerQA.
• To tackle the challenge of web-navigation 

tasks requiring long context, we propose 
WebWalker.

Motivation



Comparison between WebWalkerQA and other 
benchmarks.

Datasets



Data Generation Pipeline for WebWalkerQA.

Datasets



Dataset statistics on difficulty level. Language and domain distribution.

Datasets



Web Traversal Task: 

Given an initial website URL and a query 𝑄, which needs to be 
answered by exploring the website. The goal of this task is to 
gather enough information through page traversal to ultimately 
answer the query 𝑄.

Evaluation: 

Correctness -> acc. Evaluated by GPT-4o 
Efficiency -> Action count of successful agentic executions

Datasets



Think then Explore Think then Critique
Motivated by pair programmingReAct format

Methods
WebWalker: a multi-agent framework



The explorer agent traverses the web 
pages in Thought-Action-Observation 
(𝑇, 𝐴, 𝑂) paradigms.

The critic agent updates the memory 
until sufficient information is 
accumulated to effectively address the 
query.

Methods



Methods



Agent



Agent



Agent

How to build a web agent like Deep Research from scratch?
• unlock the autonomous multi-turn information seeking 

agency



Pipelines
Step I: Construct diverse and challenging deep information seeking QA pairs 
based on the real-world web environment; 

Step II: Sample high-quality trajectories from QA pairs using both LLMs and 
LRMs to guide the agency learning process; 

Step III: Perform fine-tuning to adapt the format instruction following to 
agentic tasks and environments;

Step IV: Apply RL to optimize the agent’s decision-making and generalization 
capabilities in real-world web environments



Datasets
Previous training datasets are relatively simple and do not capture the 
real-world challenges.



Datasets

Mimic human behavior by systematically clicking and collecting 
subpages accessible through sublinks.



Datasets

Rewrite simple questions into more complex, challenging ones  
systematically .



Methods



Demos



WebAgent

https://github.com/Alibaba-NLP/WebAgent

If you like our project, feel free to give us a ⭐ on GitHub!



Thanks for watching!
QA


