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Introduction

Though Large LanguageModels (LLMs) have demonstrated the powerful capabilities of few-shot learn-

ing through prompting methods, supervised training is still necessary for complex reasoning tasks. Be-

cause of their extensive parameters andmemory consumption, both Parameter-Efficient Fine-Tuning

methods and Memory-Efficient Fine-Tuning methods have been proposed for LLMs. Nevertheless,

the issue of large annotated data consumption, the aim of Data-Efficient Fine-Tuning, remains
unexplored.

One obvious way is to combine the PEFTmethod with active learning. However, as shown in Figure 1,

the experimental results show that such a combination is not trivial and yields inferior results.
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Figure 1. (a) Active learning combined with LoRA compared to passive learning. (b) Active learning combined with full

parameter tuning compared to passive learning.

Through probe experiments, we hypothesize the observations can be explained by two main reasons:

Uncertainty Gap and Poor Model Calibration.

To address the aforementioned issues, we propose conStrainT LoRA with dynamic Active

leaRning (STAR), a novel approach for effectively integrating uncertainty-based active learning and

LoRA.

Probing PEFT on Prediction Uncertainty

As uncertainty-based AL methods mainly depend on the confidence or uncertainty of model predic-

tions to select examples during each iteration, it is straightforward to probe the confidence and un-

certainty of model predictions during AL iterations.

Probing with Prediction Confidence. As shown in Figure 2, the first probe experiment is de-
signed to explore whether the model prediction confidence of the PEFT method exhibits issues com-

pared to Few-shotmethods. The prediction confidence CF is measured by the maximum between the
output probability on token “true” and “false”.

CF = max(ptrue, pfalse) (1)

where ptrue and pfalse denotes the probabilities of token “true” and “false”, respectively.
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Figure 2. Density plot of confidence for wrong predictions.

The PEFT method is overconfident compared to the Few-shot method, where the confidence of the

wrong prediction is as high as 70%, which indicates a model calibration issue.

Probing with Prediction Entropy. As shown in Figure 3, the second probe experiment is de-
signed to investigate the change of prediction entropy of PEFT model during active learning iteration.

TheMaximum Entropy(ME) is employed as the uncertainty during active learning. Nine rounds of iteration

are performed with 500 examples selected during each iteration. The PEFT model is trained with 500

examples at the beginning as a warm-up.
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Figure 3. (a) Heatmap of correlation between prediction entropy across different iterations; (b) Scatter plot for prediction

entropy between base model (Iter0) and model after first iteration (Iter1); (c) Same as (b), except values are taken from

Iter5 and Iter6.

As we can observe in Figure 3 (a), the correlation between the base model (model without PEFT

tuning) and models after AL iteration is close to 0, which indicates a clear gap between the base model

and PEFT model. This phenomenon is even clear with the scatter plot in Figure 3, where the dots in

Figure 3 (b) should appear around the red line but appear in the upper triangular region. In Figure 3

(c), the correlation coefficients of entropy between the two iterations become relatively normal, which

is consistent with Figure 3 (a), suggesting that the gap between iterations has been alleviated.

The framework of STAR
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Figure 4. The framework of the proposed method.

Dynamic Uncertainty Measurement.To address the issue of uncertainty gap, we proposed a dynamic

uncertainty measurement to integrate the uncertainty of the frozen LLM (base model) and the uncer-

tainty of LLM fine-tuned with LoRA (full model) dynamically based on the AL iteration. As the iteration

of active learning increases, the uncertainty of the full model becomes more reliable, which is similar

to the zero-initialized attention weight in LLaMA adapter.

µ = λ(t)µb + (1− λ(t))µf (2)

where µb and µf denote the prediction uncertainty of the base model and the full model respectively,

λ(t) ∈ [0, 1] is a monotone decreasing function of AL iteration t.

Calibration with Hybrid Regularization. To address the issue of poor model calibration, we propose

a hybrid regularization method during PEFT training. The PEFT model demonstrates a pronounced

tendency toward over-confidence, which indicates that the model is over-fitting.

For the B matrix, which is zero-initialized, a L2 norm weight decay is employed.

Bt← Bt−1 − γ(gt−1 − βBt−1) (3)

where gt−1 denotes the normalized gradient acquired from the standardAdamoptimizer, and β denotes
the strength of regularization.

For theAmatrix, which is randomlyGaussian initializedN(0, 1), theMonte-Carlo dropout (MC dropout)
is adopted for more robust uncertainty estimation.

µf = 1
K

∑
k

µ
(k)
f

µ
(k)
f

= ME(LLM(x|Âk, B̂k))
(4)

where K denotes the number of feedforward propagations during the inference stage, µ
(k)
f
denotes

the uncertainty estimated at k-th feedforward, Âk and B̂k denote the LoRA matrices sampled from A
and B with dropout unit activated.

Experimental Result

Table 1 presents a detailed comparison of different methods’ performance, evaluated across three

different datasets: GSM8K, BoolQ, and OpenBookQA.

Method GSM8K BoolQ OpenBookQA

AUC RIPL AUC RIPL AUC RIPL

Random 27.37 - 60.46 - 63.44 -

Predictive Entropy 27.30 -0.09 58.39 -5.24 63.05 -1.07

w/ STAR 28.40 1.42 61.84 3.49 64.86 3.88

Maximum Entropy 27.16 -0.28 60.65 0.48 63.36 -0.22

w/ STAR 28.83 2.01 61.91 3.67 66.17 7.47

Table 1. The performance of different methods in a passive learning setup in terms of the AUC and RIPL. The optimal
results among all methods are bolded and the second-best results are underlined.

Figure 5 shows the learning curves for corresponding AL methods on GSM8K, BoolQ, and

OpenBookQA datasets, respectively.
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Figure 5. The Learning curves comparing the Predictive Entropy and Maximum Entropy methods, and each w/ STAR,

against the RANDOM baseline. The first column corresponds to the GSM8K dataset, the second column to the BoolQ

dataset, and the third column to the OpenBoolQA dataset.
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